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Abstract 

When training an artificial neural network (ANN) for classification using backpropa- 

gation of error, the weights are usually updated by minimizing the sum-squared error on 

the training set. As training ensues, overtraining may be observed as the network begins 

to memorize the training data. This occurs because, as the magnitude of the weight vec- 

tor, ||w||, grows, the decision boundaries become overly complex in much the same way as 

a too-high order polynomial approximation can overfit a data set in a regression problem. 

Since ||w|| grows during standard backpropagation, it is important to initialize the weights 

with consideration to the importance of the weight vector magnitude, ||w||. With this in 

mind, the expected value of the magnitude of the initial weight vector is here derived for the 

separate cases of each weight drawn from a normal or uniform distribution. The usefulness of 

this derivation is universal since the magnitude of the weight vector plays such an important 

role in the formation of the classification boundaries. When the network overtrains on the 

training data, it will not exhibit consistently low error on subsequent test data. One way to 

overcome this overtraining problem is to stop the training early, which limits the magnitude 

of the weight vector below what it would be if the training were allowed to continue until 

a near-global training error minimum were found. The question then is when to stop the 

training. Here, the relationship between training data set size and the magnitude of the 

weight vector providing good generalization results is empirically established using cross- 

validational analysis on small subsets of the training data. These results are then used to 

estimate at what weight vector magnitude the training should be stopped when using the 

full data set. The general classification ability of an ANN trained in this manner is shown 

to increase the percentage of correctly classified test data points by an average of 1.5% over 

that of one trained using true cross-validational early stopping on a smaller data set. The 

technique of hyperspherical backpropagation, which entails training at a set weight vector 

magnitude, is also introduced and shown to be useful in lowering the validation error during 

training. 
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Radial Complexity Estimation 

for Improved Generalization 

in Artificial Neural Networks 

/.   Introduction 

1.1   Problem Statement 

Artificial Neural Networks (ANNs) are approximation methods of establishing a re- 

lationship between an input vector, x, and an output vector, y. The information about 

this relationship is stored in a set of scalars called weights. In a feed-forward ANN, this 

relationship is usually approximated by "training" the weights with a set of training vec- 

tors. The two most important aspects of training an ANN are the convergence speed and 

the ability to generalize well [69]. A significant amount of effort has gone into speeding up 

the training time of an ANN [15,36,37,48,49,66,71,75,78,79]. Of the two, though, the 

generalization ability of the network will determine its applicability to a given problem after 

training [7,59]; an ANN which does not generalize well will quickly start to "gather dust" 

since it does not perform consistently for new input data. This good generalization capa- 

bility can be achieved a number of ways, including early stopping [7], pruning/growing of 

the hidden layer nodes [51], cross-validational early stopping [59], and regularization [8,56] 

(including Bayesian methods [10,41]). These methods attempt to limit the effective com- 

plexity of the network, the effective complexity being the ability of the network to capture 

the underlying structure of the training data. If the effective complexity is too low, the 

network cannot model the underlying structure of the training data well so the error will be 

consistently high on the training data and any test data. If the effective complexity is too 

high, the network begins to memorize the training data, including any noise in regression 

problems and outliers in classification problems. This yields a low error on the training data, 

but will tend to yield inconsistent error on subsequent test data.  In neither case is good 
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generalization observed, since the network is either insufficiently complex (too general) or 

too complex to be general enough to give consistent, low-error classification results on future 

data. 

The pursuit of good generalization should determine the network architecture and the 

magnitudes of the scalar weights. The complexity of an ANN necessary to achieve good 

generalization for a given problem is determined in part by the size of the training set [7,83]. 

This means that if we split our data into separate sets for training, cross-validation, and 

testing, we are limiting ourselves to an effective complexity that is smaller than one that 

would be allowed if we used all available data for training [59]. There are three factors which 

constrain the complexity of the discriminant boundaries when using an ANN as a pattern 

classifier: the number of sigmoid building blocks (Si), the magnitude of the weight vector 

(p), and the training data (amount available and intrinsic complexity of the distribution). 

These three factors work in conjunction with each other, so, for example, if there are N 

training examples, there will be some optimal 51 that will prevent overtraining regardless 

of the magnitude of the weight vector, p. This is known as structural stabilization. Or, for 

a given 51 and N, we can limit p such that overtraining will not occur. Ideally, though, we 

want to constrain the complexity using the training data to as great a degree as possible since 

this is the best information available about the distribution of the inputs which determines 

the classification boundaries in a Bayes optimal classifier [7,16]. The more training data we 

have, the closer we can build our discriminant functions to the Bayes optimal discriminant 

functions. The problem, then, is to use as much training data as possible to train the ANN 

so that we approximate the Bayes' optimal discriminant function as closely as possible. 

Unfortunately, when training set size is finite, the training data alone frequently will not 

provide adequate constraint of the complexity of the discriminant boundaries to prevent 

overtraining and the resulting network does not perform optimally when classifying new 

data. In this case, we then need to limit the number of hidden nodes, 51, or the magnitude 

of the weight vector, p. Bartlett has argued that limiting p is more important than limiting 51 

since a larger number of sigmoid building blocks (quantified by the number of hidden nodes, 

51) can provide a closer approximation to the Bayes optimal discriminant boundaries [4]. 

1-2 



In the past, the ANN training method of early stopping based on the cross-validation error 

has proved somewhat successful, but has not taken advantage of the full training data set 

so as to best approximate the Bayes optimal discriminant boundaries [16]; while methods of 

ANN training that use the full data set have not necessarily provided good generalization 

capabilities upon completion of training [7]. 

1.2   Scope 

This research is limited to feed-forward single-hidden-layer ANNs. Batch backpropa- 

gation is used since this method is theoretically guaranteed to converge to a solution [7,59]. 

The data sets used include a set of hand-written numerical characters from 0 — 9 (OCR data 

set), an example of which is shown in Figure 1.1, as well as a set of infrared image data 

(TESSA data set), an example of which is shown in Figure 1.2.    These two data sets are 

Ö I 234 

Figure 1.1     Example of hand-written characters, or the OCR data set. 

representative of the types of data ANNs are used to analyze in the real world, with the 

TESSA data set being particularly difficult to classify. 
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Figure 1.2     Example of an infrared image from the TESSA data set. 

1.3    Contributions 

Several contributions are presented to the field of Artificial Neural Networks. First, the 

expected initial "radial complexity," defined as the magnitude of the weight vector, is derived 

for the case of the individual weights being initialized by drawing random variables from 

uniform and normal distributions. Work in the past has concentrated primarily on initializing 

the weights so as to decrease training time, while the consideration here is for improving the 

generalization ability. Second, the radial complexity is shown experimentally to behave 

consistently during training from run to run. This behavior justifies the cross-validational 

early stopping procedures used here and in previous work. Third, the procedure of "radial 

complexity estimation" which allows the weights to be trained based on the magnitude of 

the weight vector is developed. Using this estimated radial complexity is shown to lead to 

improvements in classification ability on data sets which are prone to overtraining. Finally, 

the method of "hyperspherical backpropagation," is developed and shown to lead to lower 

error on the validation set during training. 
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1.4    Organization 

Chapter 1, Introduction, explains the problem to be solved, defines and limits the 

scope of the research, and presents the contributions to the field. Chapter 2, Background, 

reviews the current literature on methods of achieving good generalization in multi-layer 

feed-forward ANNs, including discussions on the effect that the radial complexity has on 

the decision boundaries. Chapter 3, Achieving Good Generalization, derives the expected 

value of the radial complexity during weight initialization and demonstrates the feasibility 

of using pseudo-cross-validational early stopping based on an estimated radial complexity to 

achieve good generalization in a multi-layer feed-forward ANN using data sets which exem- 

plify real-world classification problems. Also, the subject of hyperspherical backpropagation 

is developed and shown to improve the validation error during training. Finally, Chapter 

4, Conclusions and Recommendations, summarizes where this research puts the field and 

where further research is indicated. The following chapter describes previous research in the 

area of using ANNs for pattern recognition. 
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77.   Background 

Man is constantly trying to teach machines to ease his workload. Some types of pattern 

recognition are considered quite overwhelming or tedious for a human; analyzing large num- 

bers of mammograms for possible cancer [86], determining the identity of a suspect based on 

comparing fingerprints with those on file in a huge database [25], or recognizing a particular 

phoneme in a set of speech signals [80]. In this chapter, the performance of ANNs as pattern 

recognizers is discussed, as are the steps necessary to assure that trained ANNs perform 

well when making decisions after training. The ideal pattern classifier is the Bayes optimal 

classifier since it provides the minimum probability of misclassification. 

2.1    Pattern Classification 

The best error rate one can hope to consistently achieve in any classification problem is 

the Bayes error rate. This is the error achieved when using a Bayes optimal classifier, which 

uses the distribution of the inputs to make classification decisions [7,16] and minimizes the 

probability of misclassification by using the posterior probability 

P_Wft)p(ft) 
p(x) 

to make classification decisions. Unfortunately, the true statistical properties of the input 

data are seldom known, so various methods are employed to mimic the Bayes optimal classi- 

fier. After training an ANN as a pattern classifier, the best generalization results are attained 

if it forms Bayes optimal decision boundaries. 

2.1.1 ANNs for Classification. Historically, maximum likelihood estimation (MLE) 

techniques, such as backpropagation of error, have been very popular for training neural 

networks. Several sources [7,59,60] give excellent treatments on these methods. Ruck 

demonstrated that when training an ANN as a pattern classifier using Sum-square error 

(SSE), upon completion of training it provides a good approximation to a Bayes optimal 

classifier [61]. SSE is the most widely used criterion for evaluating the error of a network, 
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but other error functions can be used (i.e. Minkowski error), and, in fact, for ANNs used 

for classification, the softmax error is more appropriate [7] for approximating the posterior 

probability of an input belonging to a specific class. The outputs of the network can be 

interpreted as probabilities of class membership if we structure our network using logistic 

sigmoid activation functions (see Figure 2.1) for the hidden layer and softmax activation 

functions (a generalization of the logistic sigmoid activation function) for the output layer [7, 

9, 59].   Using the softmax function allows us to interpret the outputs of the network as 

Figure 2.1     Demonstration of how the activation function, g(a,k), is related to the output 
of a given node. 

probabilities of class membership by forcing the values at the output layer of the network to 

lie in the range (0,1) and sum to 1. The softmax function is defined as 

Vk = 9(a>k) = 
exp(afc) (2.1) 

Efe'exp(afc<)' 

The summation over k' is over all the outputs and acts as the normalization factor. 

Consider a classification problem on the well-known IRIS data set. This data contains 

three classes of flowers and each data vector consists of four features. The database has 150 

input feature vectors. An example ANN architecture used to classify this data is shown in 

Figure 2.2. This ANN has two layers and five hidden nodes. The weights feeding into the 

hidden layer are denoted as Wlji, the biases feeding into the hidden layer are denoted as 

Blj, the weights feeding into the output layer are denoted as W2kj, and the biases feeding 
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Figure 2.2     Artificial Neural Network used in our example. 
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into the output layer are denoted as B2^. The form of the weight vectors is, 

Wl   = 

Bl   = 

Wl   = 

B2   = 

Wli,i     Wl1>2    •••   WlhR 

Wl2,l        Wl2t2 W12,R 

Wlsi,l     Wlsi,2 Wlsi,R 

Bh 

BU 

BUx 

W2hl    W2h2 

W22,i    W22,2 

W2Ktl   W2Ka 

B2X 

B22 

B2 

W2ltS1 

W22,S1 

W2 K,SX 

K 

With four input features, five hidden nodes, and three classes, we have 4x5 + 5x3 = 35 

weights as well as 5 + 3 = 8 biases for a weight space of dimension 43. The final weight 

vector, after training, would ideally give an output for a set of training data that had low 

error between the target vectors and the output vectors, while also yielding low error on the 

test data. Here, the training data set is denoted by 

D = {(xW>tW),...,(xW>tW)}I (2.2) 
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with x(") being the nth training vector and t^n^ the nth target vector that represents the class 

membership of the nth training vector. A typical normalized feature vector is 

X(D = 

-0.8977 

+1.0286 

-1.3368 

-1.3086 

This feature vector belongs to class 1, so 

t^ = 

1 

0 

0 

This network has three outputs: output one is the probability that the input, x^n\ is a 

member of class one, C\, given the training data, D, and outputs two and three are the 

probabilities of belonging to class two and three, respectively, such that 

yw  = P(X<»> e dp), 

2/2 
.(») =  P(x<B> e C2\D), 

.(») yf>   =   P(XWGC3|D) 

When using the softmax function at the outputs, the error function used for classifica- 

tion takes the form 

^ = -EE*Sr)Myf,)) (2-3) 
n=\k=\ 

which is based on Bishop's cross-entropy for multiple, mutually exclusive classes [7]. t^' is 

the target value at output k for input vector n, while y£ is the actual value at output k 

for input vector n, and K denotes the number of disjoint classes, (Ci,C2, • • -CK)- For 

completeness, we derive the weight update procedure for this error function in Appendix A. 
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Upon first initializing the weights, the output, yW, for input vector x^ shown above is 

rW 

0.3443 

0.3178 

0.3379 

This equal probability state makes sense since our weights are still in a random state and 

no training has happened yet. After just five training epochs (weight updates) through the 

training data set, D , the output vector for our class one training input vector is 

r(D 

0.9634 

0.0000 

0.0366 

which is much closer to the desired output of 

t« = 
1 

0 

0 

We interpret this output as the probability of the input vector belonging to class 1 is ap- 

proximately 0.96, or 

P(x<n> G Ci\D) « .96. 

The training algorithm pushes the weight vector into the direction necessary to lower 

the error on the training set, but what then should be the starting point of this weight 

vector? 

2.2    Weight Initialization 

The importance of the initial weight vector is an often overlooked part of the training 

process [29]. In the past, for standard backpropagation, the approach to choosing a starting 

weight set has been to choose initial weights from a uniform distribution between plus and 
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minus a, usually with a = .5 [29]. Kolen argues that the magnitude of the weight vector at 

initialization plays a key role in the convergence speed of the backpropagation algorithm [29]. 

Other methods of weight initialization have also focused primarily on speeding up the weight 

training process [48,64], although Denoeux uses prototypes for weight initialization and 

considers the repercussions that this initialization can have on generalization [13]. Bayesian 

backpropagation relies on a "prior" probability distribution of the weights which is usually 

chosen to be a normal distribution with a parameter, a, governing the variance of that 

distribution [7,10,41,59]. a is chosen based on our prior belief on how closely we think each 

weight is to zero. Although the point of regularization is to create a better generalized ANN, 

there has not previously been a direct relationship established between a and the ability of 

the network to generalize well. 

After initialization, the weights are usually trained using backpropagation of error, but 

does the resultant set of weights provide the lowest possible error on the training set? 

2.3   Searching for the Minimum Error 

With MLE techniques, such as back-propagation of error, the error is computed as a 

function of the weights and some gradient descent technique is used to find a local minimum. 

Though this takes account of only one of many possible minima in weight space, the results 

are frequently satisfactory enough to justify our limited search. If the network does not 

converge to an adequate solution, the standard procedure is to restart the algorithm with a 

new random set of weights [12] to find a more suitable solution. 

Fogel [18] points out that one popularly accepted disadvantage of many MLE tech- 

niques (such as gradient descent along the error surface) is the propensity for the weight 

vector to become trapped in a local error minimum that is unsuitable. Although these 

methods converge to a solution quickly, once perceived to be trapped in an unacceptable 

local minimum the algorithm is usually reinitialized with a random weight vector and the 

training restarted [12]. Much effort has gone into finding the global error minimum when 

training the weights [34,82], but Lawrence has recently cast aspersions upon this proce- 

dure [33]. He points out that the minimum error found by gradient descent methods when 
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training an ANN is often significantly worse than the global minimum error. This makes 

sense when considering generalization ability of an ANN; while low error is obviously a de- 

sirable characteristic, the weight vector yielding the lowest error obtainable on the training 

set will almost never be the weight vector yielding the lowest error on the test set. This 

subject will be further expanded in section 2.4. Other methods exist for training ANNs, one 

such being based on evolution in living organisms. 

2.3.1 Genetic Approaches. Another method of determining the weights in an ANN 

is by letting the weights evolve over time in such a way as to mimic the evolution of an 

organism. These genetic approaches have become more popular for searching out local error 

minimums in ANNs [27,34,47,53,67,69,81,84]. 

2.3.1.1 Genetic Algorithms. Genetic Algorithms (GAs) have been used to 

determine weights in neural networks with varied success [28,30,65]. GAs are loosely based 

on models of genetic change, or evolution, in populations of individual organisms [22]. Each 

organism (weight vector) is defined as a chromosome, which in turn is made up of some 

pre-determined number of genes (bits representing weights). These genes are often treated 

as binary values, so a typical chromosome would be represented by a string of genes, or 

vector, such as (100110000111010...11001)r. The fitness of each of these organisms can be 

measured, and possible goals include invoking an evolutionary process to either improve the 

overall fitness of the population or to obtain a highly fit single member. This idea of fitness 

governs the extent to which an individual organism can influence future generations, and 

genetic operators have been developed to propagate this influence. Crossover and mutation 

are the operators most often used, where crossover is the swapping between two chromosomes 

of some subset of their genes, and mutation is the bit-switch of randomly selected genes in 

a chromosome. Crossover allows organisms to evolve much more rapidly than they would if 

each offspring simply contained a copy of the parent chromosome, occasionally modified by 

a mutation, and corresponds to a large step size in our weight space. Mutation, on the other 

hand, offers the opportunity for new genetic material to be introduced into the population, 

producing a more robust search of the entire solution space, and mutation corresponds to a 
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small step size in our search over weight space. A typical GA search is described below and 

illustrated in Figure 2.3. 

2.3.1.2   Typical GA Search. 

1. Randomly generate an initial population of chromosomes. 

2. Test the fitness of each chromosome and save the single chromosome which is most fit 

in "most-fit" queue. 

3. Generate a new population from the old population using fitness of members of old 

population and a "roulette wheel" random sorting with greater fitness increasing the 

probability of being picked. 

4. Perform crossover and mutation over entire new population. 

Each chromosome has a random chance for crossover. When tagged, a chromosome 

will interchange some subset of its genes with the same subset of genes in another tagged 

chromosome, for example 

0 

0 

0 

0 

0 

1 0 

1 0 

1 0 

1 0 

1 0 

1 0 

1 0 

1 0 

1 0 

1 0 

1 0 

0 

0 

0 

0 

0 

0 

(2.4) 

Each gene has a random chance for mutation. When tagged, a bit switch occurs 

(i.e., 1 -> 0 and 0 -> 1). 
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5. Test the fitness of each chromosome in the new population and save the single fittest 

chromosome if it is more fit than the chromosome currently in the most-fit queue. 

6. The new population takes the place of old population and loops back to step 3. 

7. Continue until some termination criteria is met (high fitness, number of generations, 

etc.). 

8. Chromosome in most-fit queue is solution. 

Initial chromosome population 

Test each chromosomes fitness 
and use roulette wheel sort 

„„    / u Is one      x   Y 
NO    / chromosome   \ Te° 

better than 
Most Fit? 

New chromosome population 
XX 

XX 

XX # 

Mutate and Cross-Over 
some genes 

Even newer chromosome population 

x       x 

Yes 

Save most fit in 
"Most Fit Queue" 

Figure 2.3     Typical Genetic Algorithm Search [23]. 

Korning points out that training weights in an ANN requires very large chromosomes 

to ensure sufficient dynamic range for the magnitudes of the weights [30].   Angeline [3] 
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gives good reasons to believe that GAs are less than optimal for training neural networks, 

especially when compared with the more general Evolution Program. 

2.3.1.3 Evolution Programs. Evolution Programs (EPs) are a generalization 

of Genetic Algorithms. While Genetic Algorithms are generally considered to be limited to 

binary representations of the data, Michalewicz points out that EPs use whatever form is 

most useful (usually a form closely related to the actual data) to solve a given problem [43]. 

A typical chromosome may then be simply a vector of real numbers. With EPs, we are 

not limited to or bound by the crossover and mutation operators typically used in GAs. 

If mutation and crossover are used, and if real numbers replace binary, possible solutions 

pointed out by Michalewicz are: 

1. For crossover, simply swap some subset of genes (now real numbers instead of bits) as 

in GA crossover. 

2. For mutation, replace the tagged gene with a new real number generated by some 

probability distribution. 

EPs have been used to find the weights in ANNs [3,57,68]. Fogel argues that mutation 

is the dominant operator in Evolutionary Programming [18], and Angeline points out that 

crossover may be particularly inappropriate when training weights for a neural network [3]. 

Porto [57] uses only a mutation operator and a fitness function based on the sum-squared 

error. He perturbs chromosomes with a normal random variable whose variance is equal to 

that error, at which point new and old chromosomes compete to find a new population that 

has an overall lower error. EPs and GAs, though, converge to single solutions; when more 

than one solution is desired, we need an algorithm that can find multiple solutions. 

2.3.1-4 Sequential Niche Techniques. Evolution Programs are fundamen- 

tally tools to solve maximization problems, finding a local maximum of a function using 

appropriate genetic operators. Beasley [5] developed a method that allows conventional EP 

techniques to be used to find an arbitrary number of local maxima of a function with several 

local maxima. This method is outlined in Figure 2.4 and summarized as follows [5]: 
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Use EP to find a solution. 

Modify fitness function to 
squash all past solutions 

No 

Figure 2.4     Illustration of Sequential Squashing of the Fitness Function [5]. 
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Sequential Niche Algorithm. 

1. Find an initial local maximum using any standard EP technique. 

2. Modify the fitness function in the region surrounding the initial local maximum using 

a "squashing" function to eliminate it from subsequent searches. 

3. Search for as many additional local maxima as desired, re-modifying the fitness function 

after each solution is obtained to eliminate that solution from the search. The locations 

of all local maxima are stored in memory and the fitness function is modified to squash 

all local maxima found in previous searches. 

Beasley discusses a number of squashing functions, one of which is 

mi-dxe/r   if d    < 

G(r) = { . (2.5) 
1 otherwise 

where m > 0 is the desired multiplicative factor at the center of the solution on 

subsequent fitness tests, r is the user-defined radius about the solution that will be affected 

by G, and dxs is the actual distance of the chromosome from the solution mode. 

Figure 2.5 demonstrates the application of Equation (2.5). Here, we have a four maxima 

fitness function in two-dimensional space. As the search locates each maximum, the fitness 

function is modified to eliminate that maximum from the search until all four maxima of the 

function are found. 

Having discussed some of the most widely accepted methods for training ANNs, we 

need to recall that the primary concern of any ANN design should be that the network 

generalizes well when tested on previously unseen data. 

2.4    Generalization 

An ANN's usefulness after training is completely determined by its ability to correctly 

analyze future data generated by the same process that generated the training data [1, 
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Figure 2.5 Plot (a) shows the unaltered, initial fitness function. Plot be shows the al- 
tered fitness function after one of the maxima has been found by the EP and 
subsequently squashed. Plots (c) and (d) show finding and squashing of the 
remaining maxima and how this affects the fitness function each time. 

11,31,33,35,44,50,54,58,62,76,85]. A number of researchers have bounded the expected 

generalization error [21,42], and some attempt to estimate the generalization ability of an 

ANN after training [52,63,73,74]. It is well known that reducing the complexity of the 

network leads to better generalization [14]. Reducing the complexity entails limiting the 

architecture or limiting the value of the individual weights [19,24]. Efforts to achieve good 

generalization by limiting the number of free parameters, or structural stabilization, have 

been carried out using growing and/or pruning of weights and hidden nodes [14,51]. 

There are a number of ways to limit the value of the individual weights so as to im- 

prove generalization. Regularization appends a function of the weights to the error function 

so as to penalize large weight vector magnitudes during training, while cross-validational 

early stopping bases the stopping criteria on the validation set classification error rather 

than on the training set classification error, thereby stopping training while the weight vec- 

tor's magnitude is smaller than it would be if only the training set error was taken into 

consideration [7,59]. Some research investigates adding noise to the training data so as to 

"smear out" the data and make overtraining less likely [26,72], but Bishop indicates that 
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this method is closely related to limiting the magnitude of the weights in much the same 

way as regularization [7]. Another form of limiting the value of the weights is soft weight 

sharing. Once again, though, Bishop points out that this is another form of regularization. 

The magnitude of the weight vector is central to the issue of good generalization and is 

here referred to as the "radial complexity." The next section gives an example showing how 

changing the magnitude of the weight vector affects the decision boundaries for classification. 

2.4-1 Radial Complexity. The fact that the magnitude of the weight vector is 

important for good generalization has been used in regularization by many researchers [7, 

59], and Bartlett has pointed out that the size of the individual weights (which is directly 

correlated with the magnitude) is more important than the number of weights in problems 

where ANNs are useful [4]. Dunne analyze the evolution of the weights in a simple, two 

feature, two weight, problem as the polar coordinate characteristics of the weights were 

varied [17]. To understand how the magnitude of the weight vector affects the classification 

ability of the ANN trained as a pattern classifier, we need to understand how an ANN 

constructs discriminant boundaries from summations of weighted sigmoids. There are many 

factors which affect how the decision boundary is constructed. First, let us look at the 

equation for the output of a hidden node, 

zj = 9{WJ\XI + wj2x2 + ... + wjRxR + bj), (2.6) 

where Wji is the weight from input X{ to hidden node j, bj is the bias feeding into node j, 

and g(-) is the logistic sigmoid output activation function 

g(a) = —-—. (2.7) 

Another sigmoid activation function often used is the tanh activation function, 

gö    0—0, 

g(a) = , (2.8) 
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but is related to the logistic sigmoid through a linear transformation (which can be done by 

the weights and biases), so the choice of which to use is irrelevant at the hidden layer [7]. 

Each hidden node contributes a sigmoid which is the basic building block of the discriminant 

boundaries. 

The logistic sigmoid is a non-decreasing function and is approximately linear in the 

region around a = 0. If we consider this region then we see that the output of the hidden 

node (as a function of the input) lies on a hyperplane whose slope is determined by the 

weights [17] and whose position is determined by the bias term. Where this hyperplane 

crosses through g(0) forms a preliminary decision boundary. Therefore, we can express this 

individual decision boundary as 

WjiXx + wj2x2 + ... + WJRXR + bj = 0. (2.9) 

For simplicity, let us consider the two-feature case. The extension into multiple dimensions 

is straightforward. Now 

WjiXi + Wj2x2 + bj = 0. (2-10) 

So, if Wj2 7^ 0, then 

WJIXI + bj 
x2   = 

J- J- 
wj2 

Wji bj 
X! - -J-. (2.11) 

wj2 wj2 

From Equation (2.11), we can see that the slope and intercept of the decision boundary 

are functions of the ratio of weights. Changing the magnitude of a vector containing these 

three weights has no effect on the location of this individual sigmoid in input space, but 

does change the slope of the hyperplane approximation in the linear region of the logistic 

sigmoid. Figure 2.6 demonstrates how changing a weight's magnitude changes the slope of 

the sigmoid in the linear region. Keep in mind, though, that a given output, yk, is determined 

by a function that is the shifted weighted sum of all the sigmoids from all the hidden nodes 
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8 10 

Figure 2.6 Demonstration of how the slope of the linear region of the sigmoid function 
(the region around g(0)) changes with changing weight magnitude. The steeper 
slope corresponds to a larger weight magnitude while a shallower slope corre- 
sponds to a lower weight magnitude. 

2-17 



so that 

Vk = 9{wk,\Z\ + Wk,2Z2 + ... + wktsizsi + h), (2.12) 

where Wkj is the weight going from hidden node j to output node k, and bk is the bias 

feeding into node k. The form of the activation function at each output node is important 

in interpreting each output's meaning for training, but is not the primary factor affecting 

the decision boundaries in the input space. Each weight going into the output layer again 

alters the slope of the approximation hyperplane used to build each individual decision 

boundary. The output bias translates all the decision boundaries, but affects all individual 

sigmoids used to create the decision boundaries equally. The primary factor, then, in the 

determination of the decision regions is the ratio of weights and biases, not the actual values. 

The importance in the actual values of the weights is seen when looking at the summation 

of the sigmoids. Where the sigmoids intersect forms a "corner," and the "sharpness" of this 

corner depends on the steepness of the two sigmoids; two steep sigmoids intersecting will 

form a sharp corner, while two shallow sigmoids meeting will have a more rounded corner. 

Remember, the position of the sigmoid decision boundary is a function of the ratio of weights, 

while the steepness of the sigmoid is a function of the magnitude of weights. In order for a 

network to overtrain, it needs to "reach out and grab" outlying data points that lie within 

what should statistically be another class's decision space. To construct a decision region 

such as this, narrow and long, would require sharp corners. By limiting the magnitude of 

the weight vector, we have limited the ability of the ANN to construct sharp corners and 

therefore limited it's ability to overtrain. Figure 2.7 shows the effect that changing the 

magnitude of the weight vector has on the decision boundaries. This figure shows contour 

plots of a triangular decision region formed from three sigmoids in two-dimensional space. 

Notice that decreasing the radial complexity has a "low-pass" filtering effect on the high 

frequency corners. 

ANN training that concentrates on structural stabilization (limiting the number of 

weights) attempts to limit complexity by limiting the number of sigmoids used to build 

the discriminant functions, which we see now is the functional equivalent of limiting the 

magnitude of the weight vector since a smaller magnitude weight vector will require more 
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Figure 2.7 Example showing how changing the magnitude of the weight vector changes the 
ability of the ANN to make decisions based on discriminant boundaries. The 
magnitude of the weight vector decreases as we move from top left, plot (a), to 
bottom right, plot (f). Notice that the position of the discriminant boundaries 
remains unchanged, but the sharp corners are rounded off with a decrease in 
magnitude. 
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sigmoids to accomplish the same type of discrimination accomplished by fewer weights with 

unlimited magnitude. One way to keep the magnitude of the weight vector small is to use 

regularization. 

2.4.2 Regularization. Regularization is a way to keep the magnitude of the weight 

vector relatively small so as to minimize over-training in a network and achieve good gen- 

eralization [2,7,55,56,59]. The error function using regularization is the sum of the log 

likelihood error, ED, and the regularization error, Ew, 

where 

S(w)   =   ED + EW (2.13) 

=   -EE4n)Myin)) + fl|w||2, (2.14) 
n=lfc=l L 

W 

^ = flM|a = £5>?, (2.15) 

and a > 0 is the regularization coefficient. Regularization effectively warps the error surface 

by adding it to a hyper-parabola centered at the origin, thus favoring weight vectors closer 

to zero. Figure 2.8 demonstrates the effect of regularization graphically. The weight update 

repercussions due to regularization are discussed in Appendix A.2. Ripley [59] feels that 

regularization of some sort should always be used when training an ANN. Notice that the 

effect of regularization is to decrease the effective complexity by decreasing the magnitude 

of the weight vector as the network is being trained. 

The regularization coefficient used in regularization determines the amount that the 

weight vector's magnitude is penalized, and there is a direct relationship between this coef- 

ficient and the ability of the final network design to generalize well [7]. Larsen attempted to 

find the regularization coefficient that yielded the optimal generalization performance [32], 

while Bayesian backpropagation, discussed in the next section, allows this parameter to be 

changed while the network is being trained [7,10,41]. 
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Figure 2.8 Effect of using the magnitude squared of the weight vector for regularization. 
Notice that the new error function is just the old error function warped to lie 
on the surface of a quadratic bowl. 
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Some forms of regularization attempt the use of the full data set as the training set, but 

standard regularization relies on the regularization coefficient, a, to determine the penalty 

placed on the magnitude of the weight vector, a can be chosen by using cross-validation 

to determine at what a overtraining occurs. This again, though, limits the size of the 

training data set used to determine a, thereby imposing too stringent a penalty on p and 

overconstraining the complexity of the discriminant boundaries that would be allowed if a 

could be determined using all the data. 

Bayesian backpropagation is a form of regularization that attempts to overcome this 

overconstraining by using all available data when updating the regularization coefficient. 

2.4-3 Bayesian Analysis for Classification. Recently, Bayesian techniques have 

been shown to be useful in terms of analyzing different aspects of neural network architec- 

ture [7,10,38-41,46]. With Bayesian backpropagation, the regularization parameter a is 

updated during the training process. The limitations of this technique lie in the approxi- 

mation of the error surface as a Gaussian function in the area local to the most probable 

weight vector, WMP, which yields lowest error on the training set. Here, though, there is no 

guarantee that the resultant weight vector provides the lowest generalization error. With 

this Gaussian approximation, the Hessian needs to be computed and it's eigenvalues found 

in order to update a during training. A further approximation that avoids the evaluation of 

the Hessian actually uses the current magnitude of the weight vector to update a, thereby 

simply loosening the restrictions on the current weight vector's magnitude and carrying the 

training further from the search for an optimal generalization ability. These techniques have 

been used for (among other things) training the weights and choosing one network model over 

another. Rather than finding a local acceptable weight vector which minimizes regression or 

classification error, the Bayesian method (in its purest form) integrates over all weight space 

when calculating the output of the ANN. When discussing Bayesian techniques, marginal- 

ization becomes a topic of prime interest, since we need to integrate out the dependence of 

our answer on the weights. For example, the output of an ANN, in the strictest Bayesian 

sense, would be 
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y(N+V=[    f(x.(N+1\w)p(w\D)dw, (2.16) 
JR

N 

where / (•) is the function represented by the network, D is the training data set D = 

{(x^\ t^),..., (x^, t^)}, and p (w|D) is the probability density function. This integration 

considers the outputs resulting from all possible solutions in weight space weighted by the 

posterior distribution of the weights at those points. Therefore, final layer outputs resulting 

from weights that lie in an area of high posterior distribution will contribute more to the 

integration solution than outputs resulting from weights that lie in an area of low posterior 

distribution. 

According to Bayes' Theorem [7], if p (•) is the pdf and P (•) is the cdf on KN, then 

p(w\D) = P(D\w)^ytoiz\\weRN. (2.17) 

Notice that Bayes' Theorem can be interpreted as saying that the posterior distribution 

of the weights is equal to the probability of a data set being correctly classified given that 

set of weights (the likelihood), weighted by the ratio of the value of the weight prior density 

function at that point in weight space to the Probability of the data set. 

When using the softmax function so that the outputs approximate the posterior prob- 

ability of belonging to the correct class, the likelihood function is 

N    C nn 
n=\k-l 

ppiw)^nn(yin))^. (2-18> 

The likelihood function is the probability that all outputs are from the correct class 

(since y£ is the actual output at node k and t£' is the desired output at node k) and is a 

multiplication over all outputs and all data vectors from all the different classes. 
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The prior probability density function (pdf), p(w), is based on our belief in the form 

the final weight vector should take. Usually, the bias/variance argument which affects the 

generalization ability of the network suggests that the solution weight vector will be relatively 

small [7], so p(w) is usually chosen to be a Gaussian such that 

w 

*w)=(£)T«p(-f||w||'). (2.19) 

This prior pdf imposes the same type of restrictions on the magnitude of the weight 

vector as does the regularization procedure discussed in Section 2.4.2. The regularization 

factor, a, is commonly referred to as a hyperparameter and is discussed in Section 2.4.3.1. 

Integrating over all weight space can prove somewhat impractical, so approximations are 

unavoidable. 

2.4-3.1 Gaussian Approximation for Bayesian Training. MacKay [41], as 

well as Buntine and Weigend [10], applied the Bayesian approach to ANN training for prac- 

tical applications. They make the assumption that the error surface in the vicinity of the 

"most probable" weight vector (one with lowest error over the training set), WMP, is lo- 

cally a Gaussian function. This approximation allows the area in the vicinity of WMP to 

be evaluated as a quadratic error function, the analysis of which is straightforward but can 

require the evaluation of the Hessian matrix. The final error function, -S'(w), takes the form 

of Equation (2.13). 

Using the Gaussian approximation, the hyperparameter, a, is initially chosen so as to 

represent our confidence in our initial assumption about the tightness of the prior density, 

p(w), about zero (^ is the variance of the prior's Gaussian shaped distribution). The net 

is then trained using any standard technique which incorporates regularization, and a is 

treated as the regularization coefficient and adjusted every few epochs during training. 

The result of this technique (as summarized by Bishop [7] and applied solely to clas- 

sification) is demonstrated in Figure 2.9 and yields the following algorithm. 
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Bayesian Backpropagation. 

1. Choose an initial positive value for the hyperparameter a. Initialize the weights in the 

network using values drawn from the prior distribution, p(w). 

2. Train the network using a standard non-linear optimization algorithm to minimize the 

total error function S(w) given in Equation (2.13). 

3. Every few cycles of the algorithm, re-estimate values for a. This can require evaluation 

of the Hessian matrix and evaluation of its eigenvalue spectrum, or the use of one of 

the approximations mentioned below. 

4. Stop when criteria is met. 

The evaluation of the Hessian matrix can be avoided by using an approximation to 

update values for a. This is simply [7] 

W 
c*new = WJT- (2-20) 

ZU/W 

If we let p be the magnitude of the weight vector, ||w||, then 

EW = \Y>' = \P
2 (2-21) 

and 

nnew _ J_ 
o2 ' 

w 
anew = -V. (2.22) 

Therefore, it would appear that changing a using this approximation simply tracks a change 

in p and allows the network to train in the vicinity of the new radial complexity. The Gaussian 

approximation allows Bayesian backpropagation to train the ANN using regularization with 

a dynamic regularization coefficient, but some would argue that it is closer to the intent of 

Bayes' rule to estimate the initial integration instead. 

2.4-3.2   Sampling Posterior Distribution in Weight Space.     One way to sidestep 

MacKay's Gaussian approximation is to approximate the initial integration of Equation (2.16) [7, 
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Figure 2.9     Flow chart for Bayesian training of the weights in an ANN. 
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46]. By finding a set of weight vectors where p(w | D) is relatively large in weight space, we 

can approximate the integral in Equation (2.16) with 

1     M 

£("+i) ^   1 £/(x("+D)Wi)) (2.23) 
M i=i 

where M is the number of sample points in weight space. Neal [45,46] demonstrated the ap- 

plicability of this method by using a modified Monte-Carlo search to find different maximum 

points in the posterior distribution of the weights. 

While regularization limits the magnitude of the weight vector based on the regular- 

ization coefficient, early stopping limits the magnitude of the weight vector by stopping the 

training (and therefore the growth of the magnitude of the weight vector) based on the error 

obtained on the validation set which is not used to update the weights [7]. 

2.4-4    Cross-Validation. Cross-validation estimates the generalization error by 

using the cross-validation set error as an approximation to the true generalization error. 

Cross-validational early stopping is a popular tool for training ANNs since it increases the 

generalization ability of the network after training [59]. In cross-validation, the training data 

set is broken into multiple sets, new training sets and validation sets. The weights are up- 

dated using any standard MLE approach, but now the error on the validation set is tracked 

along with the error on the training set. When cross-validational early stopping is used, 

the weight vector chosen in the one that minimizes the error on the cross-validation set. As 

Bishop points out [7], cross-validational early stopping limits the effective complexity of the 

ANN since the ANN is trained, not until a set error is achieved on the training set, but until 

the error on the validation set begins to increase. Since standard backpropagation techniques 

usually attempt to set the magnitude of the weight vector to a small value at initialization 

and the weights grow during training (see Section 3.2), the cross-validational stopping cri- 

terion is correlated with the effective complexity of the ANN rather than a training error 

minimization. 
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Figure 2.10 shows an example of cross-validation.   The two curves represent errors 
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Figure 2.10     Cross-validation training on the TESSA data set. Here, the error is plotted 
versus the training epoch. 

obtained on two data sets, training data and validation data. The training data always has 

the lower error since it is a biased estimate of the error that will be observed on the test 

data, while the validation error diverges from the training error and eventually begins to 

increase with increasing complexity. 

2.4-5 Magnitude of the Weight Vector. The impetus behind regularization is the 

attempt to limit the effective complexity of the ANN by limiting the magnitude of the weight 

vector. Saseetharran points out that small initial weights prevent saturation of the sigmoid 

activation functions, but quickly grow into the saturation regions [64]. Ruck indicates that 

a limitation in the Bayes optimal classifier approximation would occur if the structural 

complexity of the network (number of hidden nodes) was too low [61]. This implies that 

we need some minimum complexity to approximate a Bayes optimal classifier, below which 

the approximation breaks down. When limiting the structural complexity of the network, 

a popular tool that has been used for bounding the generalization error is the "Vapnik- 
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Chervonenkis," or "V-C," dimension [77]. In the case of generalization of ANNs, we want 

to consider the generalization error of a given architecture for a data set of size JV, denoted 

9N(V), 
as compared to the average generalization ability, g(y). In that vein, we write 

P(max \gN(y) - g(y)\ > e) < 4A(27V)e-^. (2.24) 
(y) 

Equation 2.24 states that the probability of the max difference in generalization errors being 

greater than e is bounded by some function of the number of training samples, N, and e. 

The growth function, A(iV), gives the number of dichotomies which can be implemented by 

the ANN on a set of TV training samples. Vapnik and Chervonenkis showed that this growth 

function is either identically equal to 2N for all N, or is bounded above by the relation 

A(N) < Ndvc + 1, (2.25) 

where dye is the V-C dimension, and Ndvc is the number of patterns that a given network 

architecture can memorize. Once the number of training samples becomes greater than 

Ndvc, A(iV) begins to slow down compared with the exponential term in Equation (2.24) 

and we can see that the right hand side of Equation (2.24) becomes arbitrarily small by 

making iV sufficiently large. The primary downside to the V-C dimension analysis is that 

it yields an extremely conservative estimate of the number of training data points necessary 

to train an ANN to achieve good generalization results [4,7]. 

Bartlett [4] showed that for ANNs used for classification, the size of the individual 

weights is more important for generalization than is the number of weights. He indicates that, 

even with a number of weights much larger than is called for based on the V-C dimension, if 

the effective complexity is limited, the generalization ability is not compromised, and, in fact, 

larger networks can generalize better because they can create a larger number of discriminant 

functions. The effective complexity based on the magnitude of the weights rather than the 

number of weights is what regularization and early stopping attempt to minimize. 
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2.5   Summary 

In this chapter, we reviewed how it has been shown that good generalization is the key 

determinant when deciding on the suitability of an ANN for pattern recognition tasks. In the 

context of limiting the effective complexity of an ANN, the methods of regularization and 

cross-validational early stopping were examined and showed that limiting the magnitudes 

of the weights during training tends to yield good generalization results. The next chapter 

examines the characteristics of the radial complexity, including a method of training an ANN 

to an estimated radial complexity that will have improved generalization characteristics after 

training. 
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III.   Achieving Good Generalization 

The goal when training an ANN is to consistently achieve the lowest error on future data 

sets. Training the ANN to achieve low error on the training set does not guarantee low error 

on future data. In fact, training to low error on the training set can lead to overtraining 

and actually introduce higher error on the subsequent test set data. Thus, regularization 

pushes the weight vector in the direction of lower magnitude, thereby limiting the ability 

of the ANN to form overly-complex decision boundaries and overtrain, and early stopping 

stops the training process before overtraining can occur by also limiting the complexity of 

the decision boundaries. 

When standard training begins in an ANN, each weight is usually initialized to some 

"small" random value so as to allow "growing room," [12] while in Bayesian backpropagation, 

the weights are initialized based on our belief in what the final form of the weight vector will 

be. Since the magnitude of the weight vector is directly related to the ability of the ANN to 

form complex decision boundaries, the initial weight vector should be based directly on the 

desired initial radial complexity. 

3.1    Initial Radial Complexity 

As discussed in Section 2.2, the initial value of the weights plays an important and often 

overlooked part in the training process. One aspect of the Bayesian discussion of a prior 

pdf simply formalizes what has always been done when training ANNs; namely initializing 

the weight vector, w, based on a prior belief about the final form of the weights. Given 

the importance of the radial complexity to the generalization ability of the final network, 

the expected initial radial complexity generated by our initialization of the weights must be 

considered before training is begun. We know that to find the expected value of the radius, 

£(/?), we have 

oo 

OP) = I pip(P)dp, (3.i) 
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but this requires knowledge about the probability density function, fp(p). Here £(•) is the 

expectation operator with respect to the pdf p(-). 

3.1.1 Weights Distributed Normally. To find fp(p), we start with each individual 

weight distribution. The first case considered is when each Wi has a distribution that is 

N(0,cr2) (the prior pdf we have been discussing for Bayesian training). Define variables Xj 

such that Xi is N(0,1), then Wi = aX{ is N(0,cr2). Furthermore, define a variable yi such that 

yi = Wi = (trxi)   =a Xi. (3.2) 

We know that 

P2   =   V1 + IJ2 + - + VW 

therefore 

Define z such that 

a2x\ + a2x\ + ... + a2x2
w, (3.3) 

P2 

^ = x2
1+x2

2 + ... + x2
v. (3.4) 

z = ^, (3.5) 

then we know that z has a Chi-square distribution, fz{z), for the random variable Z, with 

W degrees of freedom [20], so 

W,)J^*"/""*(-*)   ^\ (3,) 
0 ,z <0 

What we want, though, is the expected value of p.   This is found by rearranging Equa- 

tion (3.5) to read 

p = ay/z. (3.7) 

We can now find the expected value of p using 
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oo 

f(p) = /pfp(p)dp> 
0 

oo 

=     / ay/zfz(z)dz 
-00 

OO 

00 

Setting m = ^y^ and a = \, and consulting the CRC Standard Mathematical Tables [6], 2 

we see that 

00 

ap) = r(f)2^jzmexv{~az)dz (3'8) 

a r(m + l) 
p (?L\ 2W/2    a' m+l (3.9) 

Hence, 

m -      °     r(!^ + 1) (3io) sw - r/^2w/2/i\(w-i)/2+i ^■1U^ 

" *^ T(f) • (311) 

Equation (3.11) is the exact expression for the expected value of the radius of a weight 

vector of length W when each element, Wi, is drawn from a prior distribution which is 

N(0,a2). This expression becomes unwieldy for large weight vectors, though, because the 

calculations of the numerator and denominator are both functions of W. Since this expression 

becomes infeasible for even moderately large values of W, we can seek an approximation for 

Equation (3.11) by using Stirling's approximation for the Gamma functions in the numerator 

and denominator [6]. The first term in Stirling's approximation states, for x > 10, 
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r (x) ~ xx exp (—x) J— = xx 2 exp (-x) V2n, 

which is reasonable since we are dealing with large W (W > 20). Using this approximation, 

then, yields 

r(Bi)       (Mj^'-'^pt-m)^ 
r(f)    H       (f)^exp(_f)^ 

Observe a property of Euler's number e [6] is (since VF is large) 

lim    1 + —      = e. 

Substituting property (3.13) into Equation (3.12) gives, for large W, 

(3.13) 

r(f) ~   e ~ "(If-H) 
"(f) 

(3.14) 

Now, putting Equation (3.14) into Equation (3.11) gives an approximation for the expected 

value of p when W is large 

£ (p) ~ aVW. (3.15) 

Summarizing, if a weight vector, w, of size W has elements drawn from a normal 

distribution such that each W{ is N(0,<72), the expected value of the magnitude of that weight 

vector, if W is large, can be approximated using Equation (3.15). 
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Notice that if we look at the relationship between £ (p) and £ (p2), we find the variance 

of p to be 

var(p)=£(p2)-K(p)]2. (3.16) 

Re-examining a previous variable, z, we see once again that 

z = £. (3.17) 
a2' 

This allows us to find £ (p2) since 

«w = «(£ 

therefore, 

t(p2)=o2t(z). (3.18) 

This is a simple calculation since Z is a Chi-square random variable with W degrees of 

freedom, and the expected value for a Chi-square random variable is simply the number of 

degrees of freedom. This leads us to the conclusion 

t(p2)=*2W. (3.19) 

Notice that in this case (remember that when W is large, £ (p) = o\/W) 

£(/) = [£(p)]2. (3.20) 

This implies that when W is large, the variance of p is negligible. 

3.1.2    Weights Distributed Uniformly. Next we concentrate on the problem of 

finding the expected value of the radius when each individual weight is drawn from a uniform 

distribution. In ANNs, it is common to initialize the weight vector with small values drawn 

uniformly between —.5 and +.5 [12]. Here, we generalize and say the weights are drawn from 
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a distribution that is uniform over the region —a to a, (a > 0). This leads to a probability 

density function of the form 

iw(w) = < 
i   for — a < w < a 

0    otherwise 
(3.21) 

We wish to find the expected value of the radius, p = Jw\ + w\ + ... + w^y. Define a random 

variable X having a pdf 

ix(x) = < 
\   for - 1 < x < 1 

0   otherwise 
(3.22) 

We can now state that Wi = axi is a uniform random variable from —o to a. This leads to 

2 w p  =   yw\ + w\ + ... + w 

=   \J(axi)2 + (ox2)
2 + ... + (axwf 

=   ayz? + x\ + ... + x\y, 

which yields 

i{p)   =   £ (a^/z? + si + ... + x^j 

=   af f ya:f + x| + ... + x\A 

We know that 

i [\jx\ +X2
2 + ... + X2

w^j     =    I    j_^ ... j_^ y/x\ + X2
2 + ... + X2

W X 

Pn(^i)Pi2(
a;2)-Pa;w(a:;VK)da;idx2...dxw, 

which leads to 

* (a) = (2)    /.1 /-i *" /-i V^i + *2 + - + xlr dXldx2...dxw. (3.23) 
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The integration in Equation (3.23) does not have a closed form solution so we cannot give 

an expression for the expected value of £ as a function of W; but we know the variance of 

our random variable, p, is 

var(p)=£(/)-[£(p)]2. (3-24) 

This leads to 

e(p) = ^P^W. (3-25) 

Remembering the results of our approximation when the weights were initially drawn from a 

normal distribution, namely that var(p) was negligible for large W, then if we can establish 

that this is the case when the weights have a uniform distribution as well, we can estimate 

f (p) using 

* (p) = fti?)- (3-26) 

We first need to calculate £ (p2). We define a random variable, y, such that 

y = w\ (3.27) 

Using the Square Law from Thomas's book [70], we find that the pdf of y is then 

fy(y)H ^ for0<^<a (3 2g) 
0 otherwise 

First, 

and 

iW (-y/y) = ^ for - a < -y/y < 0, (3.29) 

iw (y/y) = 2^ for 0 < y/y < a. (3.30) 

But multiplying the limit terms on the negative radical by —1 yields 

fw (-y/y)   =   g- for a > y/y > 0 

=   — for 0 < y/y < a. 
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Now squaring the limits gives 

and 

Finally, we have then 

iw (-y/v) = 2a 
for 0 < y < a2, 

tw(Vv) = l for 0 < y < a2. 

Ml/)   =   < 
2o12o 

0 

for 0 < y < a2 

otherwise 

f    i for 0 < y < a2 

0 otherwise 

We will need the expected value of y, 

00 

£ (y) =   j yfy (y) dy 
—00 

0,2    1 
JQ
y2a~^dy 

1 °2 

a' 
y 

Now, if we define z again to be 

z = y\ + 2/2 + - + 2/w, 

then we know 

*(*)   =   W^fa) 

3 

(3.31) 

(3.32) 

(3.33) 
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So then, with 

we have 

P  =z, 

S(P*) = wa- 

(3.34) 

(3.35) 

Now, remember that we are trying to establish that var(p) becomes negligible as W 

increases. Although £(p) = a£ (Jx\ + x\ + ... + x\r) cannot be found analytically, we can 

use numerical integration to establish its behavior as W increases, thereby establishing the 

behavior of ap as W increases. For this exercise, it will be convenient to re-express Equa- 

tion (3.24) in the form 

£(P2)    lt(p)f 
az a1 

a 
W 
3 
W 
3 

+ x2
2 + + xw 

) 

f-j     /    /   ... /   yxj + xj + ... + x$vdxidx2...dxw 

Approximating the integration in the above expression numerically for values of W from 1 to 

10, we can glean the behavior of the variance of the complexity as W increases. Figure 3.1 

shows how the variance of the radial complexity decreases with increasing W and Figure 3.2 

demonstrates how the expected value of the square of the complexity grows along with the 

square of the expected value of the complexity with increasing W. Figure 3.3 shows the 

difference between the calculated approximation of £(p) and the average magnitude of p 

observed when initializing a set of weights using a uniform distribution and this analysis 

supports our use of the approximation in Equation (3.36). 

From this analysis, it is reasonable to use the approximation of Equation (3.26) and 

estimate the expected value of the complexity as 

tip) a (3.36) 
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Figure 3.1     Demonstration of the decay of the variance of the radial complexity, (^f )2, with 
increasing W. 

With the determination of the expected initial radial complexity, what is the behavior of 

that radial complexity during different types of weight training? 

3.2   Consistent Behavior of Radial Complexity During Training 

One method of determining when the weights in the ANN are "good enough" is based 

on the training error; once the training set error is at or below some specified value, one 

can discontinue training and test the ANN's ability to classify a test data set [7,59]. Having 

shown that the distribution used to initialize the weights determines the expected value of 

the initial radial complexity of the weight vector, it is desired to establish the relationship 

between the radial complexity and the training error during training of the ANN since this 

radial complexity contributes greatly to the ability of the ANN to generalize well to new 

data. In this section, we demonstrate one aspect of the behavior exhibited by the radial 

complexity during training of an ANN using standard backpropagation and regularization 

with sum-squared and softmax error on the OCR and TESSA data sets. Using an ANN with 
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Figure 3.2 Demonstration of the growth of the expected value of the radial complexity 
squared and the square of the expected value of the radial complexity with 
increasing W. 
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OA 

Observed 

10 
W 

Figure 3.3 Demonstration of the growth of the approximate expected value of the radial 
complexity (dotted) and the average observed magnitude of the radial com- 
plexity (solid) with increasing W. The plot on the top shows that, for small 
W, the approximation is not very good; but the plot on the bottom shows that 
for increasingly large W, the approximation is much better. 
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70 hidden nodes and 10 output nodes (one for each class), the demonstrations in this section 

show an almost deterministic behavior of the radial complexity as the training occurs. In 

Figures 3.4, 3.5, 3.6 and 3.7, looking at the plots in each figure going from left to right, 

the weights are re-initialized using values drawn from a prior Gaussian distribution which is 

set for low radial complexity (£(p) = .1) for standard backpropagation or high complexity 

(£ (p) = 95) for Bayesian backpropagation. Each figure consists of 5 different runs from left 

to right. The only difference between each plot is that the weights are re-initialized using 

the same distribution each time. The complexity measure is that of radial complexity, or 

the magnitude of the weight vector. Figure 3.4 shows the consistency of radius growth when 

using SSE and standard backprop on the OCR data set, Figure 3.5 shows the consistency 

of radius decay when using SSE and Bayesian backprop on the OCR data set, Figure 3.6 

shows the consistency of radius growth when using softmax error and vanilla backprop on 

the OCR data set, and Figure 3.7 shows the consistency of radius decay when using softmax 

error and Bayesian backprop on the OCR data set. Notice that as the training ensues, even 

though the weights have been randomly reinitialized each time, the way the error and radial 

complexity change is consistent; that is to say that the error and radial complexity change 

in the same manner with each subsequent run. 

This consistent behavior leads us to the conclusion that, when basing the stopping cri- 

teria on the training set error, the final radial complexity of the ANN is the same to within 

the variance of the initial magnitude of the weight vector; but is the training method respon- 

sible for the consistent behavior of the radial complexity? The next section demonstrates 

the results of using a non-backpropagation training method for the weights. 
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Figure 3.4 Each plot along the top row tracks the training set error versus the training 
epoch while each plot along the bottom row demonstrates how the magnitude 
of the weight vector changes as training ensues. Each column is an independent 
training run with the only change between columns being the re-initialization 
of the weight vector. 
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Figure 3.5 Each plot along the top row tracks the training set error versus the training 
epoch while each plot along the bottom row demonstrates how the magnitude 
of the weight vector changes as training ensues. Each column is an independent 
training run with the only change between columns being the re-initialization 
of the weight vector. 
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Figure 3.6 Each plot along the top row tracks the training set error versus the training 
epoch while each plot along the bottom row demonstrates how the magnitude 
of the weight vector changes as training ensues. Each column is an independent 
training run with the only change between columns being the re-initialization 
of the weight vector. 
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Figure 3.7 Each plot along the top row tracks the training set error versus the training 
epoch while each plot along the bottom row demonstrates how the magnitude 
of the weight vector changes as training ensues. Each column is an independent 
training run with the only change between columns being the re-initialization 
of the weight vector. 
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3.2.1 Consistency of Training Behavior When Using EP Training. The consistency 

demonstrated above is not a result of using backpropagation. Backpropagation is not the 

only method for setting the weights in an ANN. In fact, the final form the weight vector 

takes should be independent of the method used to obtain that vector. Evolution programs 

provide an alternative method for ANN weight training. The EP technique discussed in 

section 2.3.1.3 was used to analyze the behavior of the radius as shown in Figure 3.8. This 

45 45 

40 \       40 
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25 \   ffi 

?0  ■ ■ 20 

£. 16 
■a 

0  100  200 0  100  200 0  100  200 0  100  200 0 

Epoch 

100  200 

Figure 3.8 Each plot along the top row tracks the training set error versus the training 
epoch while each plot along the bottom row demonstrates how the magnitude 
of the weight vector changes as training ensues. Each column is an independent 
training run with the only change between columns being the re-initialization 
of the weight vector. 

figure demonstrates how the radial complexity behaves when using an evolution program. 

The squashing function is incorporated into the EP to preclude getting the same solution. 

The radial complexity also displays consistent behavior when being trained using the EP. 

Clearly, the behavior of the radial complexity as the ANN training seeks out a weight vector 

yielding a minimum error is not dependent on the backpropagation of error routine. 
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The above analysis was carried out on a hand-written character set. Does this data set 

give rise to an error surface that would cause the radial complexity to exhibit this consistent 

behavior? The next section shows that different data also gives rise to this type of behavior. 
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3.2.2 Consistency of Training Behavior When Training on TESSA Data Set . 

Would the radius still exhibit the same consistent behavior on a different data set than 

the character data set in the previous section? The TESSA data set contains infrared 

images that are very hard to classify. Training on this data set reveals that the radial 

complexity behaves consistently during training even when the network is not converging 

to a solution (Figure 3.9).  This figure demonstrates the consistent behavior of the radius 

0  200 400 0  200 400 0  200 400 0  200 400 0  200 400 

Epoch 

Figure 3.9 Each plot along the top row tracks the training set error versus the training 
epoch while each plot along the bottom row demonstrates how the magnitude 
of the weight vector changes as training ensues. Each column is an independent 
training run with the only change between columns being the re-initialization 
of the weight vector. 

when training on the infrared target data set. Note the consistency with which the radius 

behaves even when the error is not converging to a solution. Once again, we see that the 

behavior of the radial complexity remains consistent between runs even when the weights 

are re-initialized to different random values each time. 

This analysis of the behavior of the radial complexity during training also gives us 

better insight as to how cross-validational early stopping limits the magnitude of the weight 
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vector; the training (and therefore the growth of the radial complexity) is stopped earlier 

than if training set error were the stopping criterion. 

The consistency of behavior of the radial complexity is independent of the training 

method and the data set. Having shown in this section that re-initializing an ANN with 

a different set of weights drawn from the same distribution does not guarantee a different 

radial complexity when training is complete (in fact, training to some set training error 

will most likely put us into the same radial complexity every time), and that the radial 

complexity consistently changes during training, we need a way to estimate at what radial 

complexity to halt the training so that we can achieve good generalization after the training 

is complete. The next section presents the steps taken to obtain a good generalization radial 

complexity and then train to that complexity. Cross-validation plays a key role in empirically 

establishing the relationship between generalization error and radial complexity. 

3.3   Cross-Validational Radial Complexity Estimation 

When using the full data set as the training set, we cannot use cross-validatory early 

stopping since we now have no data for a cross-validation set. We can, though, estimate the 

expected radial complexity for the full data set that will provide enough constraint on the 

discriminant boundaries such that a Bayes optimal discriminant function is best approxi- 

mated. White [83] describes how the structural complexity of an ANN grows as the number 

of training data points, or experience, grows. Bartlett [4] augments this analysis with his 

proof that the magnitude of the weights (quantified here as the radial complexity) can be 

more important to generalization than the number of weights. Therefore, in classification 

problems for which ANNs are well suited, the effective complexity should also grow in the 

same manner as the structural complexity when the training data set grows [7,59]. Estimat- 

ing the radial complexity allowed for a data set of size N that provides good generalization 

characteristics is accomplished by using cross-validation on smaller data sets, slowly adding 

more data and each time using cross-validation; this allows us to see how the radial com- 

plexity that achieves good generalization grows as the size of the data set increases. Using 

regression on these radial complexities (letting the radial complexity be a function of M, the 

3-21 



number of training points), we can infer the final expected radial complexity of the ANN 

that will provide good generalization characteristics when training using the entire data set, 

and use hyperspherical backpropagation to train at that radial complexity. This allows the 

use of all data to train the ANN and still expect good generalization characteristics when 

training is complete. 

3.3.1    Generalization Error.     Let the training set be, 

Dtrain = {(x^.t«), •••, (x<">, t<">)}, (3.37) 

and the loss function be I (Dtrain,wT). The error function on the training data set is, 

1   N 

Etrain (w) = — £ I {Dtrain, w) . (3.38) 
n=\ 

Using any learning rule (e.g., backpropagation), one gets a sequence of weight vectors, {wT}, 

where r is the time step taken by one pass through the training data (one epoch). The loss 

function is typically either the least square error 

I (Dtrain, WT) = \ £ \t^-Vk (x<»>, WT) f , 
fc=l 

or the softmax error 

I (Dtrain, WT) = - £ #> In Vk (x<"\ WT) . 
fc=l 

The generalization error for a given weight vector, w, is the expected value, £ [•], of 

the loss function over all possible future example test data sets, 

Egen (w) = iTest [I (Dtest, w)]. (3.39) 

Optimally, the trained network will yield the minimum generalization error, 

£flen = min[£9en(w)], 
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and is therefore defined as 

E*gen = ^ l^Test \l (Dtest, w)]] . 

Given a cross-validation data set, 

^ = {(x«,t«),...,(xW,e))}, (3.40) 

the error on the cross-validation set is, 

1   N 

Ecv{w) = —Y,l(Dcv,*r)- 
n=l 

The generalization error can be approximated as 

Egen (w
T) ~ Ecv (w

T), 

where r is the time step, or epoch. If cross-validational early stopping is used, then the 

optimal generalization error can be approximated as, 

£;en~min[£UwT)]. 

The ability of the network to form complex discriminant boundaries is quantified using the 

radial complexity, p, therefore we are trying to empirically establish the relationship between 

the generalization error and the radial complexity. Given, 

Egen(vr)     =    f U/wl +W% + ... + wlA 

=   Egen(\\vr\\), 

then the generalization error can be expressed as a function of p such that p = \ |wT* 11, where 

r*is the integer where training is stopped. The approximate generalization error can then 
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be represented as, 

Egen(\\wT'\\)~Ecv(wTm), 

therefore 

Egen{p)~Ecv(vrT*). (3.41) 

If several training and cross-validation sets are available, the expected optimal generalization 

error as a function of p is then estimated by taking the average minimum error over all cross- 

validation sets 

Elen (p) * i E kin [Ett (P)]l > (3-42) 
V g=i L   f J 

where .E^is the error on the cross-validation set at the qth run, and Q is the number 

of separate cross-validation runs. Note that the dependency of the approximate optimal 

generalization error on the radial complexity is now explicit since individual solution weight 

vectors are not the desired outcome, but instead the relationship between generalization 

error and the magnitude of the weight vector is of primary interest. 

Define the optimal radial complexity, p^\ for a data set of size Mt at run q as the one 

that corresponds to the weight vector that yields minimum error on the validation set for 

that run. The optimal radial complexity, pOPT, for a classification problem represented by 

subsets of size Mt can then be defined as the average of the radial complexities indicated by 

cross-validational early stopping on those data sets, 

Q 

P^PT = ^E<
)
- (3-43) 

Q 5=1 

This average radial complexity is the one that yields the average minimum cross-validation 

error over the Q cross-validation runs. The minimum radial complexity is not what is sought 

since the radial complexity indicated by each cross-validation run will be dependent on how 

closely matched the randomly chosen training set is to the randomly chosen validation set. 

3.3.2   Early Stopping at the Estimated Radial Complexity.     As the number of train- 

ing data points grows, the expected good-generalization radial complexity grows as well. We 
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trained an ANN so as to obtain 15 different radial complexities. The radial complexities 

demonstrated increasing growth with increasing number of training data points. Each radial 

complexity was an average over 100 runs whose training and validation data was randomly 

drawn from the larger data set. Figure 3.10 shows the results of using cross-validation on 

data sets with 5 training data points from each class, while Figure 3.11 shows the results of 
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Figure 3.10     Cross-Validation result for 5 training data points from each class. 

using cross-validation on data sets with 50 training data points from each class. Once again, 

the plots in each figure show the error versus the radial complexity. The radial complexity for 

good generalization in each plot is that which leads to minimum error on the validation error 

curve. The difference between each plot in a given figure is re-initialization of the weights 

and choosing a random data set for training/validation. Looking at these two figures, we 

see that the radial complexity yielding good generalization (where the upper validation error 

curve is minimum) grows as we increase the number of training data points. Training was 

done for 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, and 75 data points from each 

class. 
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Figure 3.11     Cross-Validation result for 50 training data points from each class. 

Figure 3.12 shows the average good generalization radial complexity calculated for 

each size data set. Using regression on this data, we can estimate the radial complexity for a 

large number of training data points which yields good generalization. The radial complexity 

estimated for 100 data points that yields good generalization is on the order of 22. Looking 

at Figure 3.13, notice that a radial complexity of 22 is indeed representative of the region in 

which the error on the validation set begins to increase. 

We randomly generated a small data set (100 vectors from each class) from the TESSA 

data (3 class) to be used as the training data set and constructed an ANN with 70 hidden 

nodes. Using the technique described in the previous section, we used cross-validational 

early stopping with half the training data as validation data and half remaining as training 

data. The generalization error was then estimated as the error obtained on the remaining 

data (containing about 10,000 points) as per Equation 3.42. The radial complexity expected 

to provide good generalization for the full data set was estimated, and the small data set 

was trained until the radial complexity reached that value. The effects of overtraining can 

be seen in Figure 3.14. Overtraining yields a percentage of correctly classified test points of 

3-26 



25 

20 

—i a, 
I 
U 

<2 
15- 

10 

*        : 
- i : : * * " ::::*:: 

:        *        : 
*       * 

::*:::: * 
:*::::: 
:        *        : 

- *' : : : : : : - 

* 

"0 10 20 30 40 50 
Number of Training Data Points 

60 70 

Figure 3.12     Growth of the radial complexity providing good generalization as a function 
of the number of training data points. 
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Figure 3.13     Cross-Validation result for 100 training data points from each class. 
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Figure 3.14     Using cross-validation, we can see that the error on the validation set grows 
rapidly even as the training error decreases. 

51.75%. While cross-validational early stopping improves the correct classification rate to 

61.12%, the best classification rate of 63.28% is achieved when using the full data set and 

stopping training at the estimated good generalization radial complexity, pN. These results 

are summarized in Table 3.44. 

Stopping based on: 

Percent correctly classified 

■^train E ±Jcv PN 

51.75% 61.12% 62.75% 
(3.44) 

Each result is an average classification rate over 10 runs. The observed classification accuracy 

when using the full data set improves 3% over that observed when using a smaller part for true 

cross-validational early stopping, and over 14% over that observed when stopping training 

when a low error on the training data is reached. 

We have already shown how standard training of the ANN leads to a consistent change 

in the radial complexity during training of the weights, so moving the coordinate system 

in which the weights are represented from Cartesian to hyperspherical allows us to lock in 
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the radial complexity while changing the other parameters. By converting our coordinate 

system from Cartesian to hyperspherical (outlined in Appendix B), we can influence the 

parameters of the weight vector not associated with the radial complexity (magnitude of the 

weight vector). 

3.4    Training at a Fixed Radial Complexity 

Now that we have estimated at which radial complexity to train our network to obtain 

good generalization, what would the effect be of restricting training to that radial complexity? 

This analysis can be carried out by using hyperspherical methods such as an Evolution 

Program or hyperspherical backpropagation which operate on the angles only. Since we 

have defined our effective complexity in terms that are complementary to the hyperspherical 

coordinate transformation, hyperspherical methods such as these provide an ideal way to 

confine a weight vector to a specific radial complexity during training. 

3.4-1 Genetic Approach. Using EPs we can generate a population of weight vectors, 

convert them to hyperspherical coordinates, use evolution on the angles, and obtain a solution 

that maintains a constant radial complexity. Figure 3.15 shows the results of using an EP to 

train the ANN at a given radial complexity to classify the hand-written character set. The 
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Figure 3.15     Using an EP to train the ANN at a specific radial complexity. 

error used is the same error used with backprop, but the weight angles are updated using 

genetic methods rather than backpropagation methods. Each training epoch here is not just 

a pass through the training data, but a pass that yielded a lower error than the previous 
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iteration. This method demonstrates the tendency of the training error to decrease, but is 

very slow compared to hyperspherical backpropagation which constrains the weight updates 

to travel in the direction of a lower error. 

3.4-2 Hyperspherical Backpropagation Approach. Dunne first suggested transform- 

ing the weight vector using polar coordinates (since he was working with only 2 weights) [17] 

to analyze the behavior of the weights over time. That research was limited to a very small 

dimensional weight space; here we allow for any number of weights since real-world problems 

usually demand a very large network to reach a solution. Thus, we use the term "hyperspher- 

ical" coordinates to denote any radial coordinate system that has more than three Cartesian 

coordinates as its starting frame of reference. Given that there is some ideal hypershell in 

which lies the weight vector that provides the best generalization, then one hopes this weight 

vector radius is what the training methods limiting weight values seeks; once we determine 

this value, we should confine the training of the weight vector to that radial complexity 

so as not to harm the generalization characteristics of the trained ANN. Here, we refer to 

any method that updates the weights using a combination of standard backpropagation and 

hyperspherical coordinates as hyperspherical backpropagation. If we desire to update the 

angles directly, then we need to know the effects of changing those angles in hyperspherical 

coordinates, i.e., what is the change in the error due to a change in a given weight vector 

angle? 

For hyperspherical backpropagation, we have 

0T+1   _ QT _ 
V 

dED (6T) 
d9 

(3.45) 

For notational convenience, we will arrange the angles in the same manner that we 

arrange the weights. Let the weights be expressed as 

W\   = 

W2   = 

Wll   Wl2   •••   W\R 

W21   W22   •••   W2S1 
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where 

WT = 

and 

W2] = 

Wl2,i 

Wlsm 

= 1,2,...,R , 

i = l,2,...,Sl 

WIKJ 

Let a concatenated (column) weight vector, w, be 

w   = (Wl1)     (Wl2)     •■■(W1R)     (B1)T   (W21)     (W22)     •••(W2S1)     (B2)q 

=   [wi w2... ww]T • 

Now the coordinate transformation from Appendix B can be used to yield a vector of angles 

and a magnitude such that 

W    =     [01,   02i---,0W-li   pf 

\ewll)T (ewl2)T ...(^y (9m)T (oW2l)T (eW22)T ...(eW2S1)T (eB2)T^ 

gW2   = 

gWl1      ßWl2      < % #     gWlR 

QW2
1
     QW2

2 
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iwa 

iBl 

<\W2 

9ai   = 

aWl 
^1,1 

yi,2       • * '    U1,R 

^2,1 ^2,2 y2,Ä 

°S1,1 aSl,R . 

0f 
Bl 

iBl 

iBl 
*S1 

^1,1      yi,2 

/)W2     /)W2 
^2,1      p2,2 

aW2     aW2 
°K,\     °K,2 

B2 n 
6: B2 

aW2 
V1,S1 

aW2 
°2,S1 

aW2 
°K,S\ 

Accordingly, we assign the angles to a given weight as 

Wljti = p sin #i sin 82 ■ ■. sin 0j|j_i cos 0 -^ , (3.46) 

where the subscript j,i — 1 simply implies the angle preceding the ji angle in the W- 

dimensional weight space. Similarly, 

Blj = psin0i sin02...sin0B_1
1cos0B1, 

■\W2 W2kij = psin01sin02...sin0^1cos0fe7, 

(3.47) 

(3.48) 
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and 

iB2 aB1 B2k = psm61smO2-8m9%l1cos0%2. (3.49) 

The angle updates are derived in Appendix B as 

n=l 

(-zjWkj tan9lf (T) + 2fo+1)W2fe(j+1) cot 0™» (r) + ... 

+^i«;fcsi cot ö^2 (T) + bk cot 0£? (r)), 

N 

I 
n=l 

«f (r + 1) = Of (T) - „ £ (s/W - (<"») (-B2* tan Of (r)), (3.50) 

ej> (r + 1)   =   *]« (r) - , £ £ (y<"> - 4"') W^" (l - *<»>) x 
n=lfc=l 

fa (-Wl,, tan 0™ (T)) + *(i+1) Wli(4+1) cot 0™ (r) + ... 

+a*WliÄ cot 0$ (r) + Bl, cot 0™1 (r)), 

and 

El 
n=lfc=l 

Of1 (r + 1) = 9f (r)-^E (v?° " *in)) W2fci *<"> (l - *<»>) {-Bl, tan 0f (r)), (3.51) 

where 77 is the step size coefficient, r is the time index (epoch), and Zj is the output of hidden 

node j. 

For the purpose of maintaining a constant radial complexity, another method of per- 

forming hyperspherical backpropagation is to update the weights in Cartesian coordinates 

using any standard backpropagation technique, converting the new weights over to hyper- 

spherical coordinates, resetting the magnitude parameter to the previous value, and then 

converting back to Cartesian coordinates. These two methods are theoretically identical 

(although there are limitations that must be placed on the angles since they are limited to 

certain regions), and there is no appreciable difference in implementation time since both 
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must convert the weights over to hyperspherical coordinates after each weight evaluation and 

update. 

Here, we use hyperspherical backpropagation to find a solution weight vector at a 

constant radial complexity. A comparison of standard backpropagation versus hyperspher- 

ical backpropagation when classifying the hand-written OCR data set is presented in Fig- 

ure 3.16. Notice that cross-validational early stopping would cause the ANN to stop training 
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Training Error with Standard Backpropagation 
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1500 2000 

Figure 3.16 This figure demonstrates how using standard backprop to train an ANN on 
the hand-written character set compares to using Hyperspherical Backprop 
to train the ANN at a specific radial complexity. Notice that without hyper- 
spherical backpropagation, the algorithm overtrains and begins to suffer from 
an increase in the validation set error. 

at about 100 epochs, and without hyperspherical backpropagation to lock the radial com- 

plexity in place, the algorithm overtrains thereafter and begins to suffer from an increase in 

the cross-validation error which indicates less than optimal generalization. With hyperspher- 

ical backpropagation, the error on the validation set not only does not increase, it continues 

to decrease. This is due to the ramifications of limiting the complexity and yet continuing 

the training; since the corners of any two intersecting decision sigmoids can only be so sharp, 
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the weight updates must lower the error by shifting the global positions of the discriminant 

boundaries rather than going after outliers. 

3.5   Summary 

The determination of the initial radial complexity of an ANN based on the prior dis- 

tribution used to generate our initial weight vector was discussed. This quantity determines 

the starting point of the ANN training algorithm, and should be of primary concern when 

initializing the weights. Research in the past has initialized the weights without regard for 

this quantity, simply using the same initial distribution for each weight regardless of the 

number of hidden nodes. As demonstrated, though, the initial radial complexity grows with 

the number of weights in the ANN so the parameters of the distribution (bounds or variance) 

from which each weight is drawn should change as the number of weights is changed. 

By examining the behavior of the radial complexity during network training, we cast 

doubt on the practice of re-initializing an ANN with weights drawn from an identical dis- 

tribution as previous initializations. The behavior of the radial complexity is a function of 

the training, the error function, and the method of training, but given these quantities, the 

behavior is consistent and not a function of the random values to which the weights are ini- 

tialized (although it is a function of the distribution from which the weights are initialized). 

Knowing the initial radial complexity and how this radial complexity behaves as the 

training set grows, we then showed that the radial complexity of an ANN that yields the best 

generalization for the full training data set can be estimated by using cross-validational early 

stopping on smaller size data sets, then using regression on those resultant radial complexities 

to obtain the radial complexity allowed by training the ANN with all available data, thereby 

allowing the data to constrain the decision boundaries as much as possible. With this 

development of radial complexity estimation, we now have a method of training an ANN 

with standard backpropagation techniques and yet confining the magnitude of the weight 

vector to a desired radial complexity so as to maintain good generalization characteristics. 

As an example, we showed how this method provided a better estimated general classification 
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accuracy than true early stopping.  This technique is quite useful since the generalization 

characteristics of the ANN are the primary concern of the end-user. 

Finally, we showed how hyperspherical backpropagation can lead to decreased valida- 

tion error during training of the ANN. By limiting the radial complexity to an estimated 

magnitude, here estimated using cross-validational early stopping, we have forced the ANN 

to lower the error by shifting the location of the overall discriminant boundaries rather than 

overtraining on the outliers. 
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IV.   Conclusions and Recommendations 

4-1    Conclusions 

Here, we reviewed that the primary consideration when training an ANN is the ability 

of the trained network to generalize well [7,59]. Methods such as cross-validational early 

stopping and regularization attempt to find a solution at an effective complexity yielding 

good generalization (since the effective complexity of the network determines its generaliza- 

tion ability [14]). In light of the research done by Bartlett [4], the effective complexity was 

quantified as the magnitude of the weight vector (radius of the hypershell defined by the 

weight vector), and here referred to as the radial complexity. 

The expected value of initial radial complexity of the ANN was shown to be an increas- 

ing function of the number of weights (based on the distribution from which each individual 

weight is drawn). This expected initial radial complexity is important regardless of the meth- 

ods used to train the ANN since the initial radial complexity needs to be set appropriately 

so as to assure growth or decay into a radial complexity that yields good generalization. 

The behavior of the radial complexity during training was seen to behave in a consistent 

manner from run to run even when the weights were re-initialized to different starting values. 

This behavior was shown to be independent of the data set and in fact was independent of the 

type of training (provided the weights were being guided toward an area of lower perceived 

error over the training set). 

Radial complexity estimation for early stopping was shown to lead to superior gen- 

eralization when used to train an ANN to a desired radial complexity, and hyperspherical 

backpropagation was seen to consistently decrease the validation error during training. No 

previous technique has attempted to obtain a solution that would remain at a specific com- 

plexity calculated to provide improved posterior probabilities as measured by the validation 

error. 
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4-2   Recommendations for future Research 

Global minimum search techniques, questioned by Lawrence [33] for standard back- 

propagation, can be used with hyperspherical backpropagation with the constraint that the 

weight vector remains at a specific radial complexity. This hypershell global minimum (min- 

imum obtainable training error at a given radial complexity) would yield the lowest error in 

that hypershell, and yet maximize the generalization capability of the ANN. 

All methods used to speed up standard backpropagation, such as momentum and 

instantaneous backpropagation [12], are usable with radial complexity estimation and hy- 

perspherical backpropagation, so there is immediately a plethora of algorithm tweaks to 

optimize training speed. Ideally, a number of solutions need to be obtained at a given radial 

complexity to form a committee of networks which also can help improve generalization [7]). 

This research briefly mentions the relationship between the regularization coefficient, 

a, and the radial complexity, p, when using Bayesian backpropagation to train an ANN. A 

logical next step would be to use the technique of radial complexity estimation to determine 

the optimal a to use during Bayesian backpropagation to provide a result that is based on 

the expected generalization ability of the final weight vector. 
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Appendix A.   Weight Update Formula 

A.l   Standard Batch Backpropagation 

To update each weight, we use the equation 

aw 

where r is the time step, r\ is the step size, and w is an individual weight. Realizing that 

ED = Z 4n), (A.2) 

where, for softmax error, 

4n) = -E4n)in(yin)), 
Jb=l 

or, for sum-squared error, 

*£'-5 EOT-«£")'• 
we can carry out the analysis as follows. 

A.1.1    Second Layer Weight Update.     First, we will update the second layer weights. 

Using the chain rule, we see that 

dEP = dE^daP 
dwkj      flog») dwkj ■ K^> 

From Bishop [7], we know that 

dED]  - (..w_tm 

dwki 
3  ' Jkj 
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whether we use softmax or sum-squared error. Therefore 

dwkj 

And 

"fr={#)-4'W)- (A.4) 

<'=<»«-<) £(ä/l")-<i"))#)- (A.5) 
n=l 

A.1.2   First Layer Weight Update.      The first layer weight update is carried out by 

setting 

dwß      ti daP dzf daf dWji' 
K   ' > 

We already know 77^-, so now we determine 
da 

daf   ~    j    V      j   > 

dwji % 

This leads to 

Therefore 

^ - E E (nS" - 4*') «wj" (1 - 4") &■ (A.7) 
17 "0'*       n=l fc=l 

N    K 

El 
n=lfc=l 

^ = «$-•? E E (»J° - #°) MB) (1 - *jn)) *Sn). (A.8) 

The step-size parameter 77 (e > 0) has been the subject of much research and is usually 

chosen to speed the training process. If 77 is chosen to be constant for each weight update 

(as is sometimes the case), we note that the step size is a linearly increasing function of the 

training set size, N. To eliminate this dependency of the step size on N, we choose to make 

V=^, (A.9) 
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where c is a constant. 

A.2    Weight Updates with Regularization 

With our regularization, we see that, in a generic case, 

ftg(w) = dED(w) + dEw(w)^ 
dw dw dw 

But ^^ is *ne same as in Appendix A.  The only change is the addition of ^J^1.  This is 

simply 
dEwjw) 
—dw~ = aW> (A-U) 

which leads to 

<r = <J-^fEE(yin)-4n))?) + ^) 
\n=lfc=l / 
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Appendix B.   Hyperspherical Coordinate Transformation 

Given a weight vector 

w=[w1,w2,...,ww], (B.l) 

we wish to generate a hyperspherical representation such that 

w=[0i,02l...,0w_i,p], (B.2) 

where 

Wi   =   pcos6i, 

w2   =   p sin #i cos #2, 

tu3   =   p sin 91 sin Q2 cos #3, 

(B.3) 

Ww-i   =   psin0isin02sin03...sin0vi<'-2COs0vK-i, 

ww   =   psin0isin02sin03...sin0vK-2sin0vK-i- (B-4) 

Generating the angles is a matter of bookkeeping. All angles (except dw-i) are in the 

interval [0,7r), while dw-i is in the interval [—IT, 7r]. The angles $1, ...,9w-2 are necessary to 

project w into the next set of dimensions while 6w-\ is confined to two dimensions. The 

radius and angles are then found as follows: 

p   =   yjwl + w\ + ... + w^, 
IÜ1 

0i   =   arccos[—], (B-5) 

02    =     < 
arccos[^fe] »1^0 

0 0i =0 
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09      =      < 

ö\V-2     —     ' 

Qw-i  —   i 

arccosf   .?*.„]   02 ± 0 

0 02 = 0 

arccosf—r—%—."T-2 • a 1   6w-^ 9^ 0 

0 

— arccos 

0W-3 = 0 

,ü^ ]    ww < 0 
psinöi sin02-"Sin#iy-2 

+ arccosf—T-ä—jf^^i-T-T 1    ww > 0 
ipsinöi sin »2 ••• sin 0^-2' — 

0 

(B.6) 

(B.7) 

Ow-2 + 0 

0W-2 = 0 

(B.8) 

where arccos denotes the principle inverse cosine function. With these relationships, we 

can freely change the hyperspherical parameters of a given weight vector to see how those 

changes affect the error. 
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Appendix C.   Derivation of Angle Updates for Hyperspherical 

Backpropagation 

For completeness, we derive the angle updates when using hyperspherical backprop. 

C. 1   Second Layer Angle Update 

First, we will update the second layer weights. Once again, remember that 

n=l 

Using the chain rule, we see that 

dEP      dED daP 
dOkj      daP d9kj 

From Appendix A, we know that 

(C.2) 

.ö«iB) 
Now, we need to find^—. We know that 

4n) = zxwkl + ... + ZjWkj + zu+1)Wku+i) + ... + zsiwkisi + bk. (C.4) 

This leads to 

w/^ = d^ZlWkl + - + WiWki + ^(j+1)Wfc(j+1) + - + dö^*31"""31 + m^ 
ft ft ft ft ft 

= zid9^wki+-+z^wki+z^wrk{j+x)+■■■+*5i^fe>si+w^- 

Let us look at each term; 

wkj = psinöi sin02 sin03... sin0fc(j_i) cos9kj, (C.5) 
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so 

—— wkj   =   psinöisinÖ2sinÖ3...sinö/fc(j_i)^—cosöfcj 

=   p sin öi sin 02 sin #3... sin 0fc(j_i)(— sin 9kj) 

=   psm di sm 02 sin 03... sin 0fcr,-i) a   (~ sm 9kj) 
COS Pfcj 

(-sin0fcj) 
=    Wkj~ Z~"^ COS 9kj 

=   -Wfcjtanöfcj, 

—--tüfcü+i)   =   /9sin0isin02sin03...—— sin 0fej cos 0fe(j+1) 

=   p sin #! sin 02 sin 03... cos 0fcj cos 0fc(j+i) 
sin0; 

sinöfcj 
=   p sin 0i sm 02 sm 63... . cos 0fc(j+i) cos 0fcj 

cos 0fe,- 
sm (7fcj 

=   WfcO+i)Cot0fcj, 

6fe   =   /9sin0isin02sin03...—— sin0fcj...sin0fcsicos0fc 
d9kj 

r        '        '       °   d9kj 

=   p sin 0i sin 02 sin 03... cos 9kj... cos 0fcsi cos 8k 

sm9kj =   p sin 0i sin 02 sin 03... ———- cos 0fe5i cos 0k sm dkj 
_    cos ekj 

sin 9kj 

=   bkcot$kj. 

This leads to 

-ak
n) = O+0+...+Zj (-wkjta,nekj)+Z(j+i)Wk(j+1)Cot9kj + ...+zslwksicot9kj+bkcot9kj. d9kj 

(C.6) 
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Therefore 

i)Ei(n) 

-Qf- = (?/in) - 4n)) (-ZjWkj taRdkj + z{j+l)wk(j+1) cot9kj + ... 

+ZsiWkSl COt 9kj + bk COt 9kj), 

and 

AT 

£ 
n=l 

Olj1 = Qlj ~ *7 Z {yin) - 4U)) (-ZjVkj tan^fcj + z^+^w^+i) cot öfcj- + ... 

+*siWfcsi cot öfci + 6fc cot 6kj), 

with 
N 

I 
r»=l 

C1 = »I " »? E (vJ° - 4n)) (-bkj tan 0fc). (C.7) 

C.,2   First Layer Angle Update 

Now, the first layer weight update is carried out by setting 

8ED _ f f c?4n) daP dzf da™ 

We already know —$j-, so now we determine 

&** 
(n) 

dz3 

n  (n) 

oaf   "    j    l      *'   j 

We can find -xjh- in the same way we found ~^— 69j, 

■ää~aj    = 0 + 0 + ... + Xj (-Wji tan6ji) + X(i+i)W^i+1) cot 6ji + ... + xRwjRcot 0jj + bj cot 0^. 

(C.9) 
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This leads to 

dE N     C 

~ = E E (v*0 - 4n)) Vkjzf (l - zf]) (Xi (-Wji tan On) + x{i+1)wj{i+1) cot 9j{ + .. 
^J*        n=l fe=l 

+XRWJR COt 0jj + 6j COt 0jj). 

Therefore 

JV    c 

El 
n=lfc=l 

Ö?1 = V» ~ V E E (»J° ~ 4n)) to« ^B) (l - zf) {Xi (-Wji tan %) + x(i+1)^(i+1) cot % + ... 

+xRwjR cot öji + bj cot fyj), 

and 
JV    c 

EX 
n=lJb=l 

T"1 ^I-^EE (vJ° " 4n)) t»^B) (l - z^) (-6, tan 0,). (CIO) 
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